Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article -
The graph of a real-valued quadratic function of a real variable x, is a parabola. Image credit: Enoch Lau |
A quadratic equation is a polynomial equation of degree two. The general form is
where a ≠ 0 (if a = 0, then the equation becomes a linear equation). The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x^{2}, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term.
Quadratic equations are known by that name because quadratus is Latin for "square"; in the leading term the variable is squared.
A quadratic equation has two (not necessarily distinct) solutions, which may be real or complex, given by the quadratic formula:
If the discriminant , then the quadratic equation has two distinct real solutions; if , the equation has two real solutions which are equal; if , the equation has two complex solutions.
These solutions are roots of the corresponding quadratic function
View all selected articles | Read More... |
Selected image -
A Lorenz curve shows the distribution of income in a population by plotting the percentage y of total income that is earned by the bottom x percent of households (or individuals). Developed by economist Max O. Lorenz in 1905 to describe income inequality, the curve is typically plotted with a diagonal line (reflecting a hypothetical "equal" distribution of incomes) for comparison. This leads naturally to a derived quantity called the Gini coefficient, first published in 1912 by Corrado Gini, which is the ratio of the area between the diagonal line and the curve (area A in this graph) to the area under the diagonal line (the sum of A and B); higher Gini coefficients reflect more income inequality. Lorenz's curve is a special kind of cumulative distribution function used to characterize quantities that follow a Pareto distribution, a type of power law. More specifically, it can be used to illustrate the Pareto principle, a rule of thumb stating that roughly 80% of the identified "effects" in a given phenomenon under study will come from 20% of the "causes" (in the first decade of the 20th century Vilfredo Pareto showed that 80% of the land in Italy was owned by 20% of the population). As this so-called "80–20 rule" implies a specific level of inequality (i.e., a specific power law), more or less extreme cases are possible. For example, in the United States in the first half of the 2010s, 95% of the financial wealth was held by the top 20% of wealthiest households (in 2010), the top 1% of individuals held approximately 40% of the wealth (2012), and the top 1% of income earners received approximately 20% of the pre-tax income (2013). Observations such as these have brought income and wealth inequality into popular consciousness and have given rise to various slogans about "the 1%" versus "the 99%".
Did you know -
- ...that you cannot knot strings in 4-dimensions? You can, however, knot 2-dimensional surfaces like spheres.
- ...that there are different sizes of infinite sets in set theory? More precisely, not all infinite cardinal numbers are equal?
- ...that every natural number can be written as the sum of four squares?
- ...that the largest known prime number is nearly 25 million digits long?
- ...that the set of rational numbers is equal in size to the subset of integers; that is, they can be put in one-to-one correspondence?
- ...that there are precisely six convex regular polytopes in four dimensions? These are analogs of the five Platonic solids known to the ancient Greeks.
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Deep web. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Subcategories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
In other Wikimedia projects